

Comparison of the upper critical fields obtained within Ginzburg-Landau and Werthamer – Helfand – Hohenberg theories for optimally-doped YBa $_2$ Cu $_3$ O $_{7-\delta}$ thin films

Eugene Petrenko¹, Lyudmila Omelchenko¹, Daulet Sergeyev², Andrei Solovjov^{1,3,4}

¹B.Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine,

47 Nauky Ave., Kharkiv, 61103, Ukraine

²K.Zhubanov Aktobe Regional State University,

34 A. Moldagulova Prospect, 030000, Aktobe, Kazakhstan

³Institute for Low Temperatures and Structure Research, Polish Academy of Sciences,

P.O. Box 1410, 50-950 Wroclaw, Poland

⁴The faculty of physics, V.N. Karazin Kharkiv National University,

Svobody Sq. 4, 61022 Kharkiv, Ukraine

Till today, there is still no comprehensive theory that could fully describe high-temperature superconductors (HTSCs). One may agree that is the most actual challenge in modern solid-state physics. Among HTSCs with a superconducting (SC) transition temperature T_c exceeding the boiling point of liquid nitrogen, scientists distinguish a class of metal oxides with an active plane CuO_2 such as $YBa_2Cu_3O_{7-\delta}$ (or YBCO), called cuprates. These type-II superconductors are known to have a strong d-wave anisotropy expressed in a low density of charge carriers, strong electronic correlations and quasi-two-dimensionality, according to a great number of studies [1, 2, 3, 4].

The high value of T_c results in short size of Cooper pairs determined by the coherence length. Depending on the given direction in a crystal lattice, the corresponding sizes of Cooper pairs in ab-plane ξ_{ab} are of an order of magnitude greater than ones along c-axis ξ_c . To determine $\xi_{ab}(T)$ and $\xi_c(T)$ coherence lengths, one needs to obtain preferably wide temperature dependences of the upper critical field $H_{c2}(T)$ in orientations of applied magnetic field both parallel to the ab-plane and c-axis.

We report in detail the comparison of the upper critical fields $H_{c2}(T)$ obtained within Ginzburg-Landau (GL) and Werthamer – Helfand – Hohenberg (WHH) theories for optimally-doped YBa₂Cu₃O_{7-d} thin films. For different orientations of the magnetic field, the calculations give 638 and 153 T for $\mu_0H_{c2}(0)$ | | ab and $\mu_0H_{c2}(0)$ | | c, respectively, using WHH theory. The GL theory is able to describe experiment giving much higher values of $\mu_0H_{c2}(0)$. For the first time, we obtained the temperature dependences of coherence lengths $\xi_{ab}(T)$ and $\xi_c(T)$ within proposed theories as well as using 50% and 90% criteria of the normal state resistivity value. The WHH(0.9 ρ_N) approach gives $\xi_{ab}(0)$ = 14.7 Å and $\xi_c(0)$ = 3.5 Å which correlates with literature data.

- [1] R. Haussmann, Phys. Rev. B 49 (1994) 12975
- [2] V. M. Loktev, R. M. Quick, and S. G. Sharapov, Phys. Rep. 349 (2001) 1
- [3] O. Tchernyshyov, Phys. Rev. B 56 (1997) 3372
- [4] J. R. Engelbrecht, A. Nazarenko, M. Randeria, and E. Dagotto, Phys. Rev. B 57 (1998) 13406