FLUORESCENCE LIFETIME MICROSCOPY REVEALS SYNTHETIC IDENTITY AND BIOLOGICAL FUNCTION OF LIPOSOMAL DOXORUBICIN

Annalisa CARRETTA¹, Francesco CARDARELLI^{1,2}

¹Laboratorio NEST, Scuola Normale Superiore, Pisa, Italy ²NEST, Istituto Nanoscienze-CNR, Pisa, Italy

OBJECTIVES

- ➤ Knowing the form in which **encapsulated Doxorubicin** is administered to cells with a **label-free** procedure
- ➤ Monitoring stability conditions of a liposomal formulation in a non-invasive way

EXPERIMENTAL OBSERVATIONS

Confocal microscopy shows different cellular localization for liposomal Doxorubicin (DOXOVES®) with respect to molecular Doxorubicin (DOX).

Left: Encapsulated Doxorubicin is located predominantly in the cytoplasm. Right: Molecular Doxorubicin reaches the nuclei leading cells to death.

DOXOVES® uptake is immediate (in seconds) and generates a significantly greater signal than autofluorescence.

Confocal images of CHO cells observed during treatment with DOXOVES®. Autofluorescence is already subtracted since t = 0 s (corresponding to drug's administration).

RESULTS

We resolved the **phasor-FLIM** signature of DOXOVES® into the contribution of three co-existing fluorescent species (each with its characteristic mono-exponential <u>lifetime</u>):

- crystallized DOX (<u>0.2 ns</u>),
- **free DOX** (<u>1.0 ns</u>),
- DOX bound to lipids (4.5 ns).

On the right a schematic representation of DOXOVES® based on phasor-FLIM results.

We quantified the changing in terms of molar fractions under altered temperature conditions.

METHODS

The supramolecular organization of DOXOVES® was investigated with **nanoscale sensitivity** using a phasor approach to Fluorescence Lifetime Imaging Microscopy.

We investigated DOXOVES®: a formulation of 85 nm-diameter PEGylated liposomes loaded with Doxorubicin, exploiting its intrinsic fluorescence.

SCAN FOR REFERENCE

annalisa.carretta@sns.it francesco.cardarelli@sns.it

