

VOC detection: hope or hype?

A preliminary study to unlock many challenges

<u>S. Casalinuovo</u>¹, A. Buzzin¹, D. Caschera², S. Quaranta², F. Federici², L. Zortea³, A. Brotzu³, S. Natali³, D. Puglisi⁴, G. de Cesare¹ and D. Caputo¹

¹ Dept. of Information Engineering, Electronics and Telecommunications Sapienza University of Rome, Rome (Italy) ² Institute for the Study of nanostructured materials (ISMN), National Research Council, Rome, Italy)

³ Dept. of Chemical Eng. Materials and ⁴ Dept. of Physics, Chemistry and Biology Environment, Sapienza University, (IFM), Linköping University Rome, Italy) Linköping, Sweden

Challenges

- > developing a chemiresistive sensor for disease detection
- > exploiting breath volatile compounds
- ➤ utilizing a green method for synthesis and deposition of nanoparticles as VOC detectors

VOC

Volatile Organic Compounds (VOCs): chemicals born form cellular metabolic activity and present in various bodily fluids, most of all in breath. Since its origin, the VOC pattern can be considered as a un/healthy signature.

Exhaled VOC – disease correlation

STANDARD vs NEW technologies for breath analysis

multiple sclerosis, Crohn's disease

diabetic ketosis, monitoring fat loss, heart failure

nonalcoholic steatohepatitis, celiac disease

chronic kidney disease, Alzheimer/Parkinson's disease

lung cancer, chronic obstructive pulmonary disease

STANDARD TECHNOLOGIES:

PRO I

CONS |

Gas Chromatography (GC) Mass Spectrometry (MS) GC-MS

Proton Transfer Reaction (PTR) – MS

Ion Mobility Spectrometry
Selected Ion Flow Tube – MS
Spectrometry
Optical Absorption

- SensitivitySpecificity
- SpecificityPrecision
- Cost effective
- Time consuming
- Need of skilled technicians
- Low portability

NEW TECHNOLOGIES: Electronic nose Sensor arrays Various types of gaseous sensors (piezolelectric, optical, colorimetric. chemiresistive) CONS

Nanomaterial based sensors

- Low cost
- Low weight and size
- Real-time monitoring
 - Quick method
- Few studies, especially on a clinical cohort

VOC selection

Selected VOC: ethanol.

As this compound originates from microbial fermentation of the carbohydrates in the gastrointestinal tract, many studies highlight it as probe for diabetes mellitus, cystic fibrosis, heart failure, lung cancer, colorectal cancer.

Nanomaterial selection

A plethora of studies underlined the potential of gold nanoparticles (AuNPs) for developing a **lock-and-key system** with a VOC detection purpose.

We developed a chemiresistive device whose output (electrical impedance) is proportional to its input (probe concentration).

Synthesis step GOLD PRECURSOR: Chloroauric acid (HAuCl₄)

REDUCING/SURFACTANT AGENT:
Polyvynilpirrolidone (PVP)

Deposition step

<u>DIP COATING</u> of the aqueous solution containing gold nanoparticles on a cotton substrate

Preliminary results

The Nyquist plot on the left side, shows a different behaviour by comparing AuNP coated cotton sample before and after spraying a 40% ethanol solution. Ethanol induces an average change of resistance of:

- 89% at 1Hz
- 56% at 1kHz
- 32% at 1MHz.

characterization in the UV-vis range of both solution and coated cotton reveals the presence of around 20 nm diameter Au NP associated to a peak at 550 nm.

Conclusions

The obtained results encourage to continue in the investigation of new scenarios opened by VOC detection and nanomaterial usage.

Future steps for developing smart devices with a clinical focus include checks with other probes as biomarkers for various diseases and with the addition of capping ligands for enhancing the sensitive response.

Acknowledgments

Authors thank the financial support of the MUR through the Sapienza University Major Project 2021: "Smart Face-mask For Monitoring Health-related Parameters In The Breathing Zone" - n. protocollo RG12117A84C979D3.