Extemporaneous preparation of fixed-dose combination orodispersible films by hot melt ram extrusion 3D printing

Chiara Meazzini, Umberto M. Musazzi, Paola Minghetti, Francesco Cilurzo

chiara.meazzini@unimi.it

Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via G. Colombo, 71 – 20133 Milano (I)

Aim

- Orodispersible films (ODF) are a valuable option for the administration of drugs to patients affected by dysphagia, children and elders [1].
- To extemporarily compound ODF in personalized dosing, few methods have been developed. Among these, hot melt ram extrusion printing has proven suitable for obtaining ODF with high drug loading [2].
- To prepare propranolol HCI (PRH) single dose ODF for personalized treatment by hot melt ram extrusion printing
 - To evaluate the feasibility of the extemporaneous compounding of ODF loaded with a fixed-dose combination of PRH and hydrochlorothiazide (HCTZ).

Materials

Preparation of ODF by hot-melt ram extrusion

ODF characterization

1. Mixture preparation:

MDX plasticized with glycerol and drug(s) were mixed in a mortal.

2. Melting of the mixture:

The mixture was loaded into a barel and melted at 95 °C.

3. Printing of ODF

- Printing speed: 20 mm/s
- Infill angle: 120 °
- Plate speed: 10 mm/s

4. Packaging

The printed ODF were immediately packaged in aluminum foil and stored at

Results and Discussion

ODF characteristics	Placebo	Propranolol single dose ODF					Fixed dose combination ODF	
		F1	F2	F3	F4	F5	PR	HCTZ
ODF area (cm²)	1	1	1.5	2	6	6	6	
Theoretical drug content (mg)	-	5	10.48	13.20	25.00	40.00	40	25
Drug content (mg)	-	4.95±0.27	10.78±0.46	13.78±1.00	25.43±0.51	40.62±2.79	40.74±0.58	25.17±0.30
ODF weight (mg)	51.6±3.1	50.0±3.8	105.0±3.4	132.0±2.7	250.0±2.4	252.3±1.4	253.6	±0.5
Thickness (µm)	318±14	403±9	398±7	403±16	318±12	329±30	363:	±4

- In all ODF, no impurities or degradation products were evidenced by • The average printing time per single ODF ranges between 47 to 150 s depending on the ODF area. HPLC analysis.
- ODF appeared whitish, homogenous, non-sticky, and easy to handle without fracture.
- ODF disintegrated within 3 min, in compliance with Ph. Eur. specifications.

Formulation	Tensile Strength (MPa)	Young modulus (MPa)	Elongation (%)	Tensile Energy (MJ/m³)
Placebo ODF	0.03±0.01	0.23±0.15	323.04±27.34	0.03±0.01
Propranolol ODF	0.32±0.15	7.93±4.87	153.89±91.13	0.16±0.07
Fixed-dose ODF	0.15±0.04	2.52±0.95	172.57±68.65	0.10±0.05

Conclusions

- References
- ✓ This study demonstrated the feasibility of using hot melt ram extrusion printing for the extemporaneous preparation of ODF of different sizes for personalized dosing.
- \checkmark Furthermore, this technology can also be exploited to prepare extemporaneous fixed-dose combination ODF which would allow to reduce polypharmacy and medication errors.

1. Cilurzo et al., Drug Discov. 2018;23:251–9. 2. Musazzi et al., Int. J. Pharm. 2018;551:52-9.